Engineering Team Develops New Approach to Limit Water Contamination
One common abatement: Dig up old lead lines and replace a portion of them with another metal, such as copper.
However, this technique can dislodge lead particulates and release them into the water supply.
Furthermore, partially replacing the lead pipe connection instead of entirely exchanging it is problematic.
A team of engineers at Washington University in St. Louis has developed a new way to model and track where lead particles might be transported during the partial-replacement process, in an effort to keep the water supply safer.
“We all know lead is not safe, it needs to go,” said assistant vice chancellor of international programs Pratim Biswas, the Lucy and Stanley Lopata Professor and the chair of energy, environmental, and chemical engineering at the School of Engineering & Applied Science.
“This is the first comprehensive model that works as a tool to help drinking-water utility companies and others to predict the outcome of an action.
If they have the necessary information of a potential action, they can run this model and it can advise them on how best to proceed with a pipe replacement to ensure there are no adverse effects.” In the research, recently accepted by the journal Environmental Science & Technology, Biswas and graduate research assistant Ahmed A. Abokifa present their approach, which predicts how far lead particles and dissolved species might travel after they’ve been disturbed.
Biswas said the companies can input their individual system’s information and receive recommendations so partial-pipe replacement can proceed without compromising water quality.
Abokifa and Biswas have developed several other drinking-water distribution system models to accurately predict disinfectant concentrations in the pipe network, especially dead-end systems.
“The predictions of the model will guide them on best practices to ensure the safety of the public at large.”